3.649 \(\int \frac {1}{(d+e x) \sqrt {f+g x} \sqrt {a+c x^2}} \, dx\)

Optimal. Leaf size=167 \[ -\frac {2 \sqrt {\frac {c x^2}{a}+1} \sqrt {\frac {\sqrt {c} (f+g x)}{\sqrt {-a} g+\sqrt {c} f}} \Pi \left (\frac {2 e}{\frac {\sqrt {c} d}{\sqrt {-a}}+e};\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|\frac {2 \sqrt {-a} g}{\sqrt {c} f+\sqrt {-a} g}\right )}{\sqrt {a+c x^2} \sqrt {f+g x} \left (\frac {\sqrt {c} d}{\sqrt {-a}}+e\right )} \]

[Out]

-2*EllipticPi(1/2*(1-x*c^(1/2)/(-a)^(1/2))^(1/2)*2^(1/2),2*e/(e+d*c^(1/2)/(-a)^(1/2)),2^(1/2)*(g*(-a)^(1/2)/(g
*(-a)^(1/2)+f*c^(1/2)))^(1/2))*(c*x^2/a+1)^(1/2)*((g*x+f)*c^(1/2)/(g*(-a)^(1/2)+f*c^(1/2)))^(1/2)/(e+d*c^(1/2)
/(-a)^(1/2))/(g*x+f)^(1/2)/(c*x^2+a)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.34, antiderivative size = 167, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {933, 168, 538, 537} \[ -\frac {2 \sqrt {\frac {c x^2}{a}+1} \sqrt {\frac {\sqrt {c} (f+g x)}{\sqrt {-a} g+\sqrt {c} f}} \Pi \left (\frac {2 e}{\frac {\sqrt {c} d}{\sqrt {-a}}+e};\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|\frac {2 \sqrt {-a} g}{\sqrt {c} f+\sqrt {-a} g}\right )}{\sqrt {a+c x^2} \sqrt {f+g x} \left (\frac {\sqrt {c} d}{\sqrt {-a}}+e\right )} \]

Antiderivative was successfully verified.

[In]

Int[1/((d + e*x)*Sqrt[f + g*x]*Sqrt[a + c*x^2]),x]

[Out]

(-2*Sqrt[(Sqrt[c]*(f + g*x))/(Sqrt[c]*f + Sqrt[-a]*g)]*Sqrt[1 + (c*x^2)/a]*EllipticPi[(2*e)/((Sqrt[c]*d)/Sqrt[
-a] + e), ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (2*Sqrt[-a]*g)/(Sqrt[c]*f + Sqrt[-a]*g)])/(((Sqrt[c]
*d)/Sqrt[-a] + e)*Sqrt[f + g*x]*Sqrt[a + c*x^2])

Rule 168

Int[1/(((a_.) + (b_.)*(x_))*Sqrt[(c_.) + (d_.)*(x_)]*Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(g_.) + (h_.)*(x_)]), x_Sym
bol] :> Dist[-2, Subst[Int[1/(Simp[b*c - a*d - b*x^2, x]*Sqrt[Simp[(d*e - c*f)/d + (f*x^2)/d, x]]*Sqrt[Simp[(d
*g - c*h)/d + (h*x^2)/d, x]]), x], x, Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && GtQ[(d*e - c
*f)/d, 0]

Rule 537

Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[(1*Ellipt
icPi[(b*c)/(a*d), ArcSin[Rt[-(d/c), 2]*x], (c*f)/(d*e)])/(a*Sqrt[c]*Sqrt[e]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b,
 c, d, e, f}, x] &&  !GtQ[d/c, 0] && GtQ[c, 0] && GtQ[e, 0] &&  !( !GtQ[f/e, 0] && SimplerSqrtQ[-(f/e), -(d/c)
])

Rule 538

Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 +
(d*x^2)/c]/Sqrt[c + d*x^2], Int[1/((a + b*x^2)*Sqrt[1 + (d*x^2)/c]*Sqrt[e + f*x^2]), x], x] /; FreeQ[{a, b, c,
 d, e, f}, x] &&  !GtQ[c, 0]

Rule 933

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(f_.) + (g_.)*(x_)]*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> With[{q = Rt[-(c
/a), 2]}, Dist[Sqrt[1 + (c*x^2)/a]/Sqrt[a + c*x^2], Int[1/((d + e*x)*Sqrt[f + g*x]*Sqrt[1 - q*x]*Sqrt[1 + q*x]
), x], x]] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[c*d^2 + a*e^2, 0] &&  !GtQ[a, 0]

Rubi steps

\begin {align*} \int \frac {1}{(d+e x) \sqrt {f+g x} \sqrt {a+c x^2}} \, dx &=\frac {\sqrt {1+\frac {c x^2}{a}} \int \frac {1}{\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}} \sqrt {1+\frac {\sqrt {c} x}{\sqrt {-a}}} (d+e x) \sqrt {f+g x}} \, dx}{\sqrt {a+c x^2}}\\ &=-\frac {\left (2 \sqrt {1+\frac {c x^2}{a}}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {2-x^2} \left (\frac {\sqrt {c} d}{\sqrt {-a}}+e-e x^2\right ) \sqrt {f+\frac {\sqrt {-a} g}{\sqrt {c}}-\frac {\sqrt {-a} g x^2}{\sqrt {c}}}} \, dx,x,\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}\right )}{\sqrt {a+c x^2}}\\ &=-\frac {\left (2 \sqrt {\frac {\sqrt {c} (f+g x)}{\sqrt {c} f+\sqrt {-a} g}} \sqrt {1+\frac {c x^2}{a}}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {2-x^2} \left (\frac {\sqrt {c} d}{\sqrt {-a}}+e-e x^2\right ) \sqrt {1-\frac {\sqrt {-a} g x^2}{\sqrt {c} \left (f+\frac {\sqrt {-a} g}{\sqrt {c}}\right )}}} \, dx,x,\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}\right )}{\sqrt {f+g x} \sqrt {a+c x^2}}\\ &=-\frac {2 \sqrt {\frac {\sqrt {c} (f+g x)}{\sqrt {c} f+\sqrt {-a} g}} \sqrt {1+\frac {c x^2}{a}} \Pi \left (\frac {2 e}{\frac {\sqrt {c} d}{\sqrt {-a}}+e};\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|\frac {2 \sqrt {-a} g}{\sqrt {c} f+\sqrt {-a} g}\right )}{\left (\frac {\sqrt {c} d}{\sqrt {-a}}+e\right ) \sqrt {f+g x} \sqrt {a+c x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.91, size = 311, normalized size = 1.86 \[ -\frac {2 i (f+g x) \sqrt {\frac {g \left (x+\frac {i \sqrt {a}}{\sqrt {c}}\right )}{f+g x}} \sqrt {-\frac {-g x+\frac {i \sqrt {a} g}{\sqrt {c}}}{f+g x}} \left (F\left (i \sinh ^{-1}\left (\frac {\sqrt {-f-\frac {i \sqrt {a} g}{\sqrt {c}}}}{\sqrt {f+g x}}\right )|\frac {\sqrt {c} f-i \sqrt {a} g}{\sqrt {c} f+i \sqrt {a} g}\right )-\Pi \left (\frac {\sqrt {c} (e f-d g)}{e \left (\sqrt {c} f+i \sqrt {a} g\right )};i \sinh ^{-1}\left (\frac {\sqrt {-f-\frac {i \sqrt {a} g}{\sqrt {c}}}}{\sqrt {f+g x}}\right )|\frac {\sqrt {c} f-i \sqrt {a} g}{\sqrt {c} f+i \sqrt {a} g}\right )\right )}{\sqrt {a+c x^2} \sqrt {-f-\frac {i \sqrt {a} g}{\sqrt {c}}} (e f-d g)} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((d + e*x)*Sqrt[f + g*x]*Sqrt[a + c*x^2]),x]

[Out]

((-2*I)*Sqrt[(g*((I*Sqrt[a])/Sqrt[c] + x))/(f + g*x)]*Sqrt[-(((I*Sqrt[a]*g)/Sqrt[c] - g*x)/(f + g*x))]*(f + g*
x)*(EllipticF[I*ArcSinh[Sqrt[-f - (I*Sqrt[a]*g)/Sqrt[c]]/Sqrt[f + g*x]], (Sqrt[c]*f - I*Sqrt[a]*g)/(Sqrt[c]*f
+ I*Sqrt[a]*g)] - EllipticPi[(Sqrt[c]*(e*f - d*g))/(e*(Sqrt[c]*f + I*Sqrt[a]*g)), I*ArcSinh[Sqrt[-f - (I*Sqrt[
a]*g)/Sqrt[c]]/Sqrt[f + g*x]], (Sqrt[c]*f - I*Sqrt[a]*g)/(Sqrt[c]*f + I*Sqrt[a]*g)]))/(Sqrt[-f - (I*Sqrt[a]*g)
/Sqrt[c]]*(e*f - d*g)*Sqrt[a + c*x^2])

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(g*x+f)^(1/2)/(c*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {c x^{2} + a} {\left (e x + d\right )} \sqrt {g x + f}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(g*x+f)^(1/2)/(c*x^2+a)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(c*x^2 + a)*(e*x + d)*sqrt(g*x + f)), x)

________________________________________________________________________________________

maple [A]  time = 0.05, size = 235, normalized size = 1.41 \[ \frac {2 \left (c f -\sqrt {-a c}\, g \right ) \sqrt {\frac {\left (c x +\sqrt {-a c}\right ) g}{-c f +\sqrt {-a c}\, g}}\, \sqrt {\frac {\left (-c x +\sqrt {-a c}\right ) g}{c f +\sqrt {-a c}\, g}}\, \sqrt {-\frac {\left (g x +f \right ) c}{-c f +\sqrt {-a c}\, g}}\, \sqrt {c \,x^{2}+a}\, \sqrt {g x +f}\, \EllipticPi \left (\sqrt {-\frac {\left (g x +f \right ) c}{-c f +\sqrt {-a c}\, g}}, \frac {\left (-c f +\sqrt {-a c}\, g \right ) e}{\left (d g -e f \right ) c}, \sqrt {-\frac {-c f +\sqrt {-a c}\, g}{c f +\sqrt {-a c}\, g}}\right )}{\left (d g -e f \right ) \left (c g \,x^{3}+c f \,x^{2}+a g x +a f \right ) c} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x+d)/(g*x+f)^(1/2)/(c*x^2+a)^(1/2),x)

[Out]

2*(c*f-(-a*c)^(1/2)*g)*EllipticPi((-(g*x+f)/(-c*f+(-a*c)^(1/2)*g)*c)^(1/2),(-c*f+(-a*c)^(1/2)*g)/(d*g-e*f)/c*e
,(-(-c*f+(-a*c)^(1/2)*g)/(c*f+(-a*c)^(1/2)*g))^(1/2))*((c*x+(-a*c)^(1/2))/(-c*f+(-a*c)^(1/2)*g)*g)^(1/2)*((-c*
x+(-a*c)^(1/2))/(c*f+(-a*c)^(1/2)*g)*g)^(1/2)*(-(g*x+f)/(-c*f+(-a*c)^(1/2)*g)*c)^(1/2)*(c*x^2+a)^(1/2)*(g*x+f)
^(1/2)/c/(d*g-e*f)/(c*g*x^3+c*f*x^2+a*g*x+a*f)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {c x^{2} + a} {\left (e x + d\right )} \sqrt {g x + f}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(g*x+f)^(1/2)/(c*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(c*x^2 + a)*(e*x + d)*sqrt(g*x + f)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{\sqrt {f+g\,x}\,\sqrt {c\,x^2+a}\,\left (d+e\,x\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((f + g*x)^(1/2)*(a + c*x^2)^(1/2)*(d + e*x)),x)

[Out]

int(1/((f + g*x)^(1/2)*(a + c*x^2)^(1/2)*(d + e*x)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {a + c x^{2}} \left (d + e x\right ) \sqrt {f + g x}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(g*x+f)**(1/2)/(c*x**2+a)**(1/2),x)

[Out]

Integral(1/(sqrt(a + c*x**2)*(d + e*x)*sqrt(f + g*x)), x)

________________________________________________________________________________________